
SYBEX Sample Chapter

Visual Basic® .NET! I Didn't Know You
Could Do That...™

Matt Tagliaferri

Chapter 1: From VB6 to VB.NET

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication
may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph,
magnetic or other record, without the prior agreement and written permission of the publisher.

ISBN: 0-7821-2890-4

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the USA and other countries.

TRADEMARKS: Sybex has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer. Copyrights and trademarks of all products and services listed or described herein
are property of their respective owners and companies. All rules and laws pertaining to said copyrights and trademarks are inferred.

This document may contain images, text, trademarks, logos, and/or other material owned by third parties. All rights reserved. Such
material may not be copied, distributed, transmitted, or stored without the express, prior, written consent of the owner.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturers. The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

SYBEX Inc.
1151 Marina Village Pkwy.
Alameda, CA 94501
USA
Phone: 510-523-8233
www.sybex.com

From VB6 to
VB.NET

2890c01.qxd 08/14/2001 7:19 AM Page 1

1 Using the New Operators

The new operator code can be found in the folder prjOperators.

Visual Basic has always been a bit behind the curve in its use of operators.
Fortunately, the .NET Framework has allowed Microsoft to easily make
some old shortcuts as well as some new operators available to the VB
programmer.

Operator Shortcuts
Borrowing from the C family of languages, you can now shorten the line
of code

x = x + 1

with the following

x += 1

Most of the other basic operators work the same way, as shown in the
following table:

Operator Shortcut Short For Meaning

x += y x = x + y add y to x and put result in x

x -= y x = x - y subtract y from x and put result in x

x *= y x = x * y multiply y by x and put result in x

x /=y x = x / y divide x by y and put result in x

x \= y x = x \ y divide x by y and put result in x (integer

divide)

x ^= y x = x ^ y raise x to the y power and put result in x

x &= y x = x & y concatenate y to x and put result in x

(string)

All of the operators shown in the table are arithmetic operators, with the
exception of the string concatenation operator &.

Fr
o

m
 V

B
6

 t
o

 V
B

.N
ET

2890c01.qxd 08/14/2001 7:19 AM Page 2

Bitwise Operators
Visual Basic has never had operators for performing bitwise functions—
until now, that is. The following table shows the three bitwise operators
available in VB.NET.

Operator Short For Meaning Example Result

And Bitwise And 1 And 0 0

Or 1 Or 0 1

Xor 1 Xor 0 1

As a refresher, the following table shows the four possible combinations of
left and right sides of bitwise operators and the result of each:

Left Right Bitand Bitor Bitxor

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Still Missing
The following lists some operators that you might be familiar with in other
languages but that still haven’t made their way into Visual Basic yet:

Mod Shortcut Many languages use % as a shortcut for the modulus
(remainder) operator and then use x %= y as a shortcut for taking the
remainder of x divided by y and putting the result back in x. The Visual
Basic modulus operator is still “mod”, and there is no corresponding
operator shortcut.

Either left or right
side of operator
is 1, but not both

Bitwise
Exclusive Or

Either left or right
side of operator
is 1

Bitwise
Inclusive Or

Both left and right
side of operator
are 1

U S I N G T H E N E W O P E R ATO R S 3

2890c01.qxd 08/14/2001 7:19 AM Page 3

Bitwise Shift There are still no operators for shifting a set of bits left or
right.

Postfix increment/decrement The C language family allows you to
write x++, which is short for x = x + 1, or x—, which is short for x = x - 1.
These operator shortcuts are not available in Visual Basic. (One wonders
why x += y was borrowed from C, but not x++.)

Using the Operators
The example program (illustrated here) shows all of the new Visual Basic
arithmetic operators in action:

It is divided into two sections. The left side of the program is a rudimentary
calculator that takes the integer values entered into two text box controls
and performs an operation on them, depending on the radio button
selected. The code that determines what operation to take is shown here:

Private Sub cbCompute_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles cbCompute.Click

Dim iValueA As Integer

Dim iValueB As Integer

‘exception handlers catch user putting

‘non-numbers in text boxes

Try

iValueA = CInt(tbA.Text)

F R O M V B 6 TO V B . N E T4

2890c01.qxd 08/14/2001 7:19 AM Page 4

Catch

tbA.Text = “0”

iValueA = 0

End Try

Try

iValueB = CInt(tbB.Text)

Catch

tbB.Text = “0”

iValueB = 0

End Try

If rbPlus.Checked Then

iValueA += iValueB ‘this is short for

iValueA = iValueA + iValueB.

ElseIf rbMinus.Checked Then

iValueA -= iValueB

ElseIf rbTimes.Checked Then

iValueA *= iValueB

ElseIf rbDiv.Checked Then

Try

iValueA \= iValueB

Catch eErr As Exception

Call MsgBox(eErr.ToString)

End Try

ElseIf rbAnd.Checked Then

iValueA = iValueA And iValueB

ElseIf rbOR.Checked Then

iValueA = iValueA Or iValueB

End If

lbAnswer.Text = “Answer: “ & iValueA

End Sub

The procedure makes use of exception handling to make sure that
numeric values are entered in the text boxes (zeros are used as the
operands if nonnumeric values are supplied) and to trap any divide-by-
zero errors that might occur. The rest of the routine merely checks which
radio button is checked and performs the correct operation on the two
numbers.

U S I N G T H E N E W O P E R ATO R S 5

2890c01.qxd 08/14/2001 7:19 AM Page 5

The second part of the program generates the beginning of the Fibonacci
sequence of numbers and displays the results in a Listbox:

Private Sub cbFib_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles cbFib.Click

Dim i As Integer = 1

Dim j As Integer = 1

Dim t As Integer

Dim iCtr As Integer = 0

Dim arList As New ArrayList(20)

arList.Add(i)

arList.Add(j)

For iCtr = 0 To 20

t = i ‘save i

i += j ‘add j to i

j = t ‘put save i into j

arList.Add(i) ‘add result to arraylist

Next

lbFib.DataSource = arList ‘bind arraylist to listbox

End Sub

This procedure makes use of the ArrayList class to store the integers and
then binds the ArrayList to the Listbox in the last line. The idea behind
the Fibonacci sequence is to start two variables at value 1, add them together,
and store the result back into one of the variables. You then repeat this
process as long as desired. The previous sample generates the first 21 values
in the sequence.

2 New Tricks in Variable
Declaration

The variable declaration code can be found in the folder prjVariables.

F R O M V B 6 TO V B . N E T6

2890c01.qxd 08/14/2001 7:19 AM Page 6

Usually, a book in this format might not cover something as rudimentary
as variable declaration in a programming language. However, Visual
Basic.NET has quite a few significant differences in its base data types and
variable declaration syntax. These differences bear discussion, because not
knowing about them can cause anything from temporary confusion to a
hair-pulling bug or two.

Integer Type Changes
The first major change you need to be aware of is that an Integer is not an
Integer anymore (huh?). Likewise, a Long is not a Long, either. In previous
versions of Visual Basic, a variable declared as an Integer gave you a 16-bit
variable with a range from –32768 to +32767. In VB.NET, an Integer is a
32-bit variable with a range from about negative to positive 2 million. In
other words, it’s what you used to call a Long. A variable declared in VB.NET
as a Long is now a 64-bit integer. So, where did the 16-bit integer go? That’s
now called a Short. Here’s a quick translation table:

What You Used to Call Is Now Called

Integer Short

Long Integer

Really big 64-bit number that I can’t define Long

Why in the name of Sweet Fancy Moses did Microsoft change the integer
type names in what seems to be the most confusing way imaginable?
There’s a good reason, actually. The answer lies in the fact that the .NET
platform is Microsoft’s attempt to bring all (or most, anyway) of their pro-
gramming languages under a single runtime umbrella: the .NET Frame-
work. One problem in attempting this was that Microsoft’s C++ and Visual
Basic languages did not use a common naming system for their data types.
So, in order to unify the naming system, some changes had to be made in
one or the other of the languages, and we VB programmers were chosen to
take on the challenging task of learning a new naming convention
(because of our superior intelligence, naturally).

If the new integer naming scheme is simply too much for you to keep track
of, you have a nice, simple alternative, fortunately. The Short, Integer, and
Long data types are the VB equivalents of the .NET Framework data types

N E W T R I C KS I N VA R I A B L E D E C L A R AT I O N 7

2890c01.qxd 08/14/2001 7:19 AM Page 7

System.Int16, System.Int32, and System.Int64. You can always declare
your integer variables using these types instead. This would certainly end
all confusion as to what type is what size.

Dim Statement Behaves Differently
Consider the following Visual Basic variable declaration:

Dim A, B, C as Integer

In VB.OLD, a line like this was the source of boundless confusion among
programmers because the data type of variables A and B was not well
defined. The intention of the programmer was probably to declare three
Integer variables, but VB6 and below did not treat this line in this way.
Instead, only variable C was declared as an Integer, and A and B are most
likely variants.

VB.NET corrects this long-time confusion. The previous line behaves as
God, Bill Gates, and most likely the programmer who wrote it intended it
to behave: it declares three Integer variables.

You can still add each type explicitly, or you can mix types, as shown here:

Dim A as Short, B as Integer, C as String

No More Variants
The Variant data type has gone the way of the mastodon. Instead, the
base, catch-all data type in Visual Basic.NET is the Object. The new Object
type duplicates all the functionality of the old variant.

Personally, I was never much for using the Variant data type because it
seemed like all I was ever doing was explicitly converting the contents of
my variant variables into integers or strings or whatever in order to perform
accurate operations on them. However, I find I’m already using the Object
data type much more frequently because it’s not just for holding base data
types like integers and strings, but also for holding actual class instance types
like Buttons, Forms, or my own invented classes.

F R O M V B 6 TO V B . N E T8

2890c01.qxd 08/14/2001 7:19 AM Page 8

Initializers
Initializers are a cute new feature that let you declare and initialize a vari-
able in the same line, as in these examples:

Dim X as Integer = 0

Dim S as String = “SomeStringValue”

Dim B as New Button()

Dim A(4) As Integer = {0, 10, -2, 8}

The first two declare and initialize simple data types to default values. The
third line is a holdover from prior versions of VB—it declares an object of
type button and instantiates it in the same line. The last line creates an
array of four integers and sets the initial values of all four elements in
the array.

N O T E Arrays in Visual Basic.NET are always zero-based arrays. The Option
Base statement is no longer supported.

Local Scope
A variable can now be declared inside a statement block such as an If or Do
While statement, and the variable will have scope only within the block in
which it is declared, for example:

Dim bDone As Boolean = False

Dim r As New Random()

Do While Not bDone

Dim Y As Integer

Y = r.Next(1, 100)

bDone = (Y < 10)

Loop

Call Console.Writeline(“Final value=” & Y)

This block of code will not compile properly because the declaration of Y is
inside the Do While block, but the Console.Writeline attempts to access

N E W T R I C KS I N VA R I A B L E D E C L A R AT I O N 9

2890c01.qxd 08/14/2001 7:19 AM Page 9

it. Since the Console.Writeline is outside the scope of the loop, the vari-
able is also out of scope.

Most programmers might combat the potential for these local scope errors
by putting every Dim statement at the top of the procedure or function.
This can lead to an inefficient use of resources, however. Consider the fol-
lowing code fragment:

If not UserHasAlreadyRegistered() then

Dim f as New RegistrationForm()

f.ShowDialg

end if

In this code, some magic function goes off and checks if the program has
already been registered. If it has not, then an instance of the registration
form is declared and shown. If the user has already registered the software,
why bother creating an instance of a form that will never be displayed? All
this does is clog up the garbage collector later. As you can see, clever use of
local scope variable can save your program memory, making it run more
efficiently.

3 Avoiding Redundant
Function Calls

The redundant function calls code can be found in the folder prjRedundant-
FunctionCalls.

This little coding shortcut seems so obvious that I almost didn’t consider it
worth inclusion in the book, but I see this rule broken so frequently that I
felt it worth repeating. The rule, in its most basic form, is as follows:

Why execute code more than once when running it once gives the same
result?

To illustrate the rule with an absurd example, consider the following block
of code:

For X = 1 to 1000

Y = 2

Next

F R O M V B 6 TO V B . N E T10

2890c01.qxd 08/14/2001 7:19 AM Page 10

This loop assigns the value 2 to variable Y, one thousand times in a row.
Nobody would ever do this, would they? What’s the point? Since no other
code executes in the loop except for the assignment statement, you know
that nothing could possibly be affecting the value of Y, except the assign-
ment statement itself.

When the previous loop is complete, Y has the value of 2. It doesn’t matter
if this loop runs one thousand times, one hundred times, or simply once—
the end result is the same.

While I’ve never seen code quite as worthless as this, the following block of
code is very close to one that I read in a Visual Basic programming article a
while back:

Do While instr(cText, “a”) > 0

cText = Left(cText, instr(cText, “a”) - 1) & _

“A” & mid(cText, instr(cText, “a”) + 1)

Loop

This code scans through the contents of a string variable and replaces all of
the lowercase letter a’s with uppercase A’s. While the function performs
exactly what it’s intended to perform, it does so in a very inefficient man-
ner. Can you detect the inefficiency?

A Simple Speedup
To determine what rankled my feathers so much about this block of code,
you need to think about how long it takes your lines of code to run. All
Visual Basic lines of code are not created equal in terms of the length of
time they take to execute. Take the instr function, for example. The instr
function scans through a string looking for the occurrence of a second
string. Imagine that you had to write a Visual Basic replacement for the
instr function. You would start at the beginning of the string, compare it
to the comparison string, and keep looping through each character until
you either found the comparison string, or got to the end of the original
string.

The instr function built into Visual Basic probably does the same thing,
albeit in some optimized fashion. However, you don’t get anything for free.
If you call instr, Visual Basic internally loops through the test string look-
ing for the comparison string. This loop is going to take some finite
amount of time (a very small amount of time, to be sure, but a finite

AVO I D I N G R E D U N DA N T F U N C T I O N C A L LS 11

2890c01.qxd 08/14/2001 7:19 AM Page 11

amount, nonetheless). Following my rule, why would you want to run this
loop more than once when running it once gives the same result?

The previous tiny little block of code calls the exact same instr function
three times every time the loop is iterated. If you assume that the instr call
itself runs as I surmise (some linear search through the input string), the
instr call will take longer to run on bigger input strings (because the code
has to loop through every character in the string). What if the input string
to the loop was the entire contents of all the books in the Library of Con-
gress? Let’s say, for the sake of argument, that the instr call takes one
minute to run on a string as large as the entire contents of the Library of
Congress. Since I call the instr call three times, the loop will require (at
least) three minutes for every iteration of the loop. Multiply that by the
number of A’s found in the Library of Congress, and you’ll have the total
operating time of the loop.

If I make a simple change to the loop, I can reduce the number of instr
function calls from three to one:

iPos = instr(cText, “a”)

Do While iPos > 0

cText = Left(cText, iPos - 1) & “A” & mid(cText, iPos + 1)

iPos = instr(cText, “a”)

Loop

The change I made was to store the result of the instr function call into a
variable and to use that variable in the first line of the loop, where the low-
ercase a is replaced by an uppercase A. The loop result is the same, but the
instr function is called only once per loop iteration.

Does a change like this really make a difference in speed? The example
program proves the difference. The program creates a large string of ran-
dom letters (with spaces thrown in to make them look a bit more like
words) and then runs through one of the previous loops to replace all of
the lowercase a’s with uppercase A’s. The “fast” loop (one instr call per
loop iteration), runs at about 75 percent of the speed of the “slow” loop
(three instr calls per loop iteration). A 25 percent speed savings is consid-
ered quite good. If a loop of this type were called repeatedly in your appli-
cation, a 25 percent speed increase might make your application feel faster
to the end users. I’ve learned that the feel of an application is of primary
importance to the end user—if the program feels slow, the user might not
use the application.

F R O M V B 6 TO V B . N E T12

2890c01.qxd 08/14/2001 7:19 AM Page 12

N O T E The example program shows a brief example of random number gen-
eration in Visual Basic. A class called Random is included in the .NET Framework
that handles all types of random number generation. The Random class contains
methods for generating floating point random numbers between 0.0 and 1.0 or
between a numeric range. See the example program function named Random-
BigString for some sample uses of the Random class.

4 The Visual Studio
“HoneyDo” List

The Task List code can be found in the folder prjDataset.

At my home, as in many homes, I’m sure, we have what we call a “HoneyDo”
list—a list of outstanding jobs around the house for me to do. These jobs
range in size from small things like sweeping out the garage or putting up
some shelves to larger tasks like removing wallpaper or staining the deck.
Sometimes, I’ll be working on one chore that reveals a second—like when I
pull up old carpet in the basement only to reveal some rust-stained con-
crete underneath. Or when I discover a hole created by chipmunks while
cleaning out the garage. It never ends.

When things like this happen, I often don’t have time to get to the second
job in the same day (the ballgame awaits, after all…). Instead, I add it to
the HoneyDo list, complete the first job, and get back to the second job
another day. Visual Studio.NET has a feature much like the HoneyDo list
(except that it doesn’t call me “honey”—good thing): the Task List. The Task
List is similar to that found in Outlook, or even previous versions of Visual
Studio, with one important distinction: you can auto-fill Task List entries
with specially constructed comments. Let’s look at how this works.

Task List categories are set up under the Tools ➢ Options dialog. The Task List
settings are under the Environment category, as shown in the next illustration.

T H E V I S UA L S T U D I O “ H O N E Y D O ” L I S T 13

2890c01.qxd 08/14/2001 7:19 AM Page 13

N O T E As you can see in the illustration, I created a BETA2 token that I used
throughout the development of this book. Whenever something wasn’t working in
VS.NET beta 1 and I suspected that the problem might be because the language
was an early beta, I left myself a note to recheck the problem once I received
VS.NET beta 2.

You can modify the entries under the Tokens list. A token is a special
phrase with which you can begin a comment. If you do begin a comment
with one of the predefined tokens, an entry is automatically added to the
task list. The text of the task is the text of the comment. This code snippet
shows a comment entered into the sample project:

‘ TODO - replace connection object later

Dim aConn As New SQLConnection(CONNECTIONSTRING)

Because the comment begins with the TODO token, a task is automatically
placed into the Task list, as shown here:

F R O M V B 6 TO V B . N E T14

2890c01.qxd 08/14/2001 7:19 AM Page 14

Once the comment is set up in this way, you can double-click the item in
the Task List and it will zoom your code directly to the corresponding com-
ment. Deleting the comment deletes the task in the Task List. This func-
tionality acts as the HoneyDo list for your project. You can set up open
tasks as comments and they’ll show up in the Task List. Using different
tokens allows you to group tasks under different categories and priorities.

5 Delving into Docking and
Anchoring

The docking and anchoring code can be found in the folder prjAnchors.

Finally, finally, finally! I am so tired of writing code to resize controls on a
form. How many third-party auto-resizer VBXs and OCXs and ActiveX con-
trols have been put on the commercial and freeware market? Being the
type of person who would only use a third-party control when its function-
ality couldn’t be duplicated with good old VB code, I never used one of
these controls. Instead, I used to spend an hour writing silly little snippets
of code in the Resize event of my VB forms to do things like:

� Making sure the Treeview got longer as the form did

� Making sure the grid got wider as the form did

� Keeping the OK and Cancel buttons near the bottom of the form

Visual Basic GUI components finally have two properties that save me
from having to write this kind of time-wasting code ever again. These are
called the Dock and Anchor properties (any reason why they chose two
maritime references?).

The Dock property can be set to one of the following values: None (the
default), Top, Left, Right, Bottom, or Fill. Setting the property to None
causes the control to stay right where you put it on the form. A setting of
Top, Left, Bottom, or Right causes the control to remain attached to that
side of the parent of the control. Setting these properties in the Visual

D E LV I N G I N TO D O C K I N G A N D A N C H O R I N G 15

2890c01.qxd 08/14/2001 7:19 AM Page 15

Studio Property Editor is done with a little graphical representation, as
shown here:

In the sample project, the Treeview is set with a Dock of Left, so it remains
attached to the left side of its parent, which is the main form. The control
lbDirections is set with a Dock of Top, which causes it to remain docked
with the top of its parent, which is the upper-panel control. The following
illustration shows a picture of the project while it’s running:

F R O M V B 6 TO V B . N E T16

2890c01.qxd 08/14/2001 7:19 AM Page 16

Docked controls grow appropriately if the edges of the parents to which
they are docked grow in the following manner:

� A control with a Dock set to Left or Right grows in height as its parent
grows in height.

� A control with a Dock set to Top or Bottom grows in width as its parent
grows in width.

The Anchor property is somewhat similar to the Dock property, but the con-
trol doesn’t attach itself directly to the edge of the form. Instead, its edges
maintain a constant distance to the edges defined by the property.

Setting the Anchor property is also done graphically, as shown in this
illustration:

D E LV I N G I N TO D O C K I N G A N D A N C H O R I N G 17

2890c01.qxd 08/14/2001 7:19 AM Page 17

The available settings are some combination of Top, Left, Bottom, and
Right. The default Anchor value is Top,Left meaning that the control’s top
and left side will remain a constant distance from the top and left edges of
its parent. If you were to set a control to Left,Right the left and right edges
would stay anchored to the left and right edges of the form—meaning that
the control would have to resize as the form was resized. The lowermost
panel in the sample project has an Anchor property of Left,Right so you
can see it resize as the form is resized and it maintains its left and right
anchors.

The last illustration shows the same project with the form made both taller
and wider. Note how all of the controls on the form have fallen into line
without a single line of code!

Looking at the illustration should give you a pretty good idea of the Dock
and Anchor properties in action, but things should really click into place
when you run the provided project. Watch all of the controls conform to
their Dock and Anchor properties as you resize the form.

F R O M V B 6 TO V B . N E T18

2890c01.qxd 08/14/2001 7:19 AM Page 18

6 Beyond the Tag property

The Tag property code can be found in folder prjCustomTreeNode.

“What? No Tag property? Why would they remove that? I use that property
in at least 100 different ways. What the heck am I supposed to do now?”

The hue and cry came from all directions when it was learned that
Microsoft had removed the Tag property from all of their controls in the
.NET Framework. That Tag property serves as a catch-all property to store
user-defined data. It originally started as an Integer property, but changed
over to a String property to meet user demand.

People found myriad uses for the Tag property. For example, suppose you
were populating a Treeview with the names of employees from a corporate
database for the purposes of creating an org chart. While loading each
employee into a TreeNode object on the Treeview, you could store the pri-
mary key for each employee (be it the social security number, a GUID, or
some other unique identifying element) into the Tag property on the
TreeNode. Then, when the application user selected a TreeNode in the Tree-
view, you would have instant access to the primary key of the table from
which you loaded these employees. This would allow you to query the
database to return additional information about the employee (date of
birth, service time, current title, and so on).

Along Came Beta 2
I guess Microsoft actually heard the developer screams when they
attempted to remove the Tag property. As of Visual Studio.NET beta 2, they
actually put the user-defined property back, as a member of the Control
class. Apart from almost rendering this part of the book useless, all
Microsoft did was anger the other developers, the ones who liked the rea-
soning behind the removal of this property to begin with. These developers
argue that we really don’t need Microsoft to give us a property for supply-
ing user-defined data, because the object-oriented features of VB.NET
make it really easy (almost trivial, really) to add user-defined properties
ourselves. I happen to fall into this camp. I submit that by removing the
Tag property, Microsoft is actually taking away a crutch that might

B E YO N D T H E TAG P R O P E RT Y 19

2890c01.qxd 08/14/2001 7:19 AM Page 19

prevent you from using object-oriented techniques and therefore not use
the new language in the way in which it was intended.

Furthermore, having a Tag property on every single component can add
up to a great deal of overhead. Do you really need a Tag property on every
label and button on every form in your application? Perhaps, but probably
not. Why have properties on controls that you’ll never use? In the long run,
it’s better to run with stripped down versions of all the controls and use
other tools to bolt new things on the side as you need them. This is a core
component of object-oriented programming.

To demonstrate the power of using object-oriented programming, I’ll take
an existing component and bolt a few new properties onto it. In this example,
the goal is to load up a Treeview with a list of files on the machine’s hard
drive. When the user clicks one of the nodes in the Treeview, I would like
the program to display the date and size of that file.

There are two basic ways I can solve this problem. The first way is to wait
until the user clicks a file in the Treeview, then go back to the file system to
load the file date and time and display it. I decided this method might be a
bit difficult to implement, mainly because my Treeview node isn’t going to
have the filename with its complete path on each node. I would proba-
bly have to iterate through the parents of the node to reconstruct the full
path of the file.

Instead, I decided that it would be much easier to store the date and time
of each file somewhere as I was iterating through the file system and load-
ing the file names into the Treeview. The only question was where to store
these date and time variables. Since I needed a date and time variable for
each file I was going to load into the Treeview, it made sense to bolt these
variables onto the TreeNode class, as shown here:

Class FilePropertitesTreeNode

Inherits TreeNode

Private FFileDate As DateTime

Private FFileSize As Long

Property FileDate() As DateTime

Get

Return FFileDate

F R O M V B 6 TO V B . N E T20

2890c01.qxd 08/14/2001 7:19 AM Page 20

End Get

Set

FFileDate = Value

End Set

End Property

Property FileSize() As Long

Get

Return FFileSize

End Get

Set

FFileSize = Value

End Set

End Property

End Class

The class is called FilePropertiesTreeNode. It inherits off of the base
TreeNode class, found in the System.Windows.Forms namespace. The pur-
pose of the class is to add two additional properties to the standard Tree-
Node. These properties store a date and a number representing the size of
a file.

The intention is to use these new TreeNodes instead of the standard Tree-
Node when filling a Treeview with file/directory information. While loading
the Treeview, I can put the date and time of each file in these new proper-
ties, thus giving me easy access to them as a node is selected in the Tree-
view. I could easily create more properties that further describe each file,
such as hidden/read-only attribute information, the file extension, the
bitmap associated with this file type, and so on.

Using an Inherited Class
To use your custom inherited TreeNode instead of the base TreeNode, you
merely create an instance of your new class and add it to the Treeview
using the same Add method you would normally use. The Add method takes
a TreeNode as its parameter—this includes TreeNode objects or direct
descendants of TreeNode objects, like my FilePropertiesTreeNode. Here is

B E YO N D T H E TAG P R O P E RT Y 21

2890c01.qxd 08/14/2001 7:19 AM Page 21

some example code to add one of our new TreeNodes to a Treeview named
tvStuff

oNode = New FilePropertitesTreeNode()

oNode.Text = “C:\WINDOWS\SOMEDUMMYFILE.TXT”

oNode.FileDate = “Jan 1, 2001”

oNode.FileSize = 65536

tvStuff.Nodes.Add(oNode)

Of course, the file information just listed is all made up. What would be
more useful would be to load actual filenames off disk and store their
properties in the new TreeNode class instances. This would be the first step
in writing a Windows Explorer–like program. The sample project prjCustom-
TreeNode does just that. It fills a Treeview with instances of my new File-
PropertiesTreeNode class, reading files on the C drive as the source of the
file information. The main recursive function that loads the Treeview is
listed here:

Protected Sub FillTreeView(ByVal cFolder

As String, ByVal oParentFolder As FilePropertitesTreeNode,

ByVal iLevel As Integer)

Dim d As DirectoryInfo

Dim f As FileInfo

Dim o As Object

Dim oFolder As FilePropertitesTreeNode

Dim oNode As FilePropertitesTreeNode

Dim cName As String

‘for this demo, we’re only going

‘3 levels deep into the file structure

‘for speed reasons

If iLevel > 3 Then Exit Sub

d = New DirectoryInfo(cFolder)

cName = d.Name

‘fix the entry ‘C:\’, so we don’t

‘have double \\ in filenames

If cName.EndsWith(“\”) Then

cName = cName.Substring(0, cName.Length - 1)

End If

F R O M V B 6 TO V B . N E T22

2890c01.qxd 08/14/2001 7:19 AM Page 22

‘create node for this folder

oFolder = New FilePropertitesTreeNode()

‘fill the custom properties

oFolder.Text = cName

oFolder.FileDate = d.LastWriteTime

‘add this node. May have to add to Treeview

‘if no parent passed in

If oParentFolder Is Nothing Then

tvFileListing.Nodes.Add(oFolder)

Else

oParentFolder.Nodes.Add(oFolder)

End If

Try

For Each f In d.GetFiles()

oNode = New FilePropertitesTreeNode()

‘set up folder

oNode.Text = f.Name

‘fill in our custom properties

oNode.FileDate = f.LastWriteTime

oNode.FileSize = f.Length

‘add this node

oFolder.Nodes.Add(oNode)

Next

For Each d In d.GetDirectories

Try

Call FillTreeView(d.FullName, oFolder, iLevel + 1)

‘catch errors, like access denied

‘errors to system folders

Catch oEX As Exception

Console.WriteLine(oEX.Message)

End Try

Next

Catch e As Exception

Console.WriteLine(e.Message)

B E YO N D T H E TAG P R O P E RT Y 23

2890c01.qxd 08/14/2001 7:19 AM Page 23

End Try

End Sub

The procedure expects a folder name as its first parameter. It creates an
instance of a DirectoryInfo object based on this folder name. The Directory-
Info object returns useful information like the name of the directory and
the last time it was written to. It also contains methods for looping through
all of the structures inside it.

The first step is to create a FilePropertiesTreeNode and add it as a child to
the passed-in parent node, also a FilePropertiesTreeNode. This routine
has a depth tester that makes sure that the routine stops loading after four
levels of depth in the file system. This is done only as an optimization, so
the load routine takes a shorter amount of time.

There are two For…Each loops in the routine—the first loops through all the
subdirectories in the current directory, and the second loops through all
the files in the directory. For each subdirectory, the same procedure is
recursively called against the new subdirectory name. For each file, one of
the FilePropertiesTreeNode instances is created, loaded with the file date
and time information, and added to the parent (folder) node.

Once the Treeview is filled, the OnAfterSelect event is set up so that the
following code runs when the user clicks on a node in the Treeview:

Private Sub tvFileListing_AfterSelect(ByVal sender_

As System.Object, ByVal e As_

System.Windows.Forms.TreeViewEventArgs)_

Handles tvFileListing.AfterSelect

F R O M V B 6 TO V B . N E T24

2890c01.qxd 08/14/2001 7:19 AM Page 24

Dim oNode As FilePropertitesTreeNode

oNode = CType(e.Node, FilePropertitesTreeNode)

If Not oNode Is Nothing Then

lbFileName.Text = oNode.FullPath

lbDate.Text = “File Date: “ & oNode.FileDate()

lbSize.Text = “File Size: “ & oNode.FileSize() &_

“ bytes”

End If

End Sub

This code first returns the node that was clicked and typecasts it to our
special node class (the typecast is necessary because the Node property on
the System.Windows.Forms.TreeViewEventArgs object is of the normal
TreeNode class). If the typecast is successful, some labels are filled with the
contents of the custom FileDate and FileSize properties.

N O T E When I finally got Visual Studio.NET beta 2 installed on my machine, I
thought I’d have to throw this part of the book away because Microsoft decided to
put the Tag property back into the language. As it turns out, though, this example
project is still quite valid. Because the sample code adds properties to a Treenode
class, and because the Treenode class is not a descendant of the Control class, I
wouldn’t have been able to use the Tag property to store my file info anyway.
Now, if Microsoft decides to move the Tag property down to the Object class
instead of the Control class, I just might have to scream…

7 Handling Control Arrays
Another Way

The control array code can be found in the folder prjNoControlArrays.

From my very first days of Visual Basic, I was enamored with using control
arrays. My first “real” Visual Basic program was a card game, and it seemed

H A N D L I N G C O N T R O L A R R AYS A N OT H E R WAY 25

2890c01.qxd 08/14/2001 7:19 AM Page 25

a perfect solution to create an array of picture box controls with the appro-
priate bitmaps for playing cards. I completed my card game, uploaded it to
a local BBS (this was a few years before the Internet), and received a few
comments about it.

My use of control arrays didn’t stop with that first card game. I must have
written a half dozen card games, as well as some crossword-type games,
the mandatory number scramble game, and a few other simple games that
gave me fun projects to work on while I learned Visual Basic. I’ll bet almost
all of those early programs used control arrays to handle the game elements.

Before I got my first copy of VB.NET, I was reading an online summary of
some of the language changes, and one of the differences mentioned that
control arrays were no longer a feature of the language.

The main benefit of having an array of controls is, of course, being able to
write the same event handling code for multiple controls and the ability to
easily tell which control fired the event, as seen here:

Sub pnPanel_Click(Index as Integer)

Msgbox(“Panel index ” & index & “was clicked”)

End Sub

This piece of VB6 code handles the Click event for an array of controls
named pnPanel and displays a message about which one was picked.

So what’s a closet game programmer like me to do? If I have several similar
user interface elements that I want handled all the same way and I can’t
group them with a control array, is there some other means to have all of
these controls share the same event code? The answer is, of course, yes.
Visual Basic introduces a Handles clause on procedures that allows you to
link many event procedures to the same code. Here is an example of the
Handles clause in action:

Public Sub PanelClick(ByVal sender_

As Object, ByVal e As System.EventArgs)_

Handles Panel1.Click, Panel2.Click, Panel3.Click,_

Panel4.Click, Panel5.Click, Panel6.Click,_

Panel7.Click,Panel8.Click, Panel9.Click

Dim p As Panel

p = CType(sender, Panel)

If p.BackColor.Equals(Red) Then

p.BackColor = Blue

F R O M V B 6 TO V B . N E T26

2890c01.qxd 08/14/2001 7:19 AM Page 26

Else

p.BackColor = Red

End If

p.Invalidate()

End Sub

This Click event is wired up to nine different Panel controls here. Para-
meter Sender is the control that caused the event. There is nothing that
forces you to link the same event to controls of all the same class, so the
Sender parameter gets passed in with generic type Object. The program-
mer has to help out in determining what class of object caused the event.
In the example program, the choice is easy, because I purposely wired this
Click event up to only Panel controls. Because I know this, I am able to
typecast the Sender parameter to a Panel variable, and I now have access
to the panel that was clicked.

The rest of the Click event checks the color of the clicked panel and
switches the color between blue and red. The last line, p.Invalidate(),
forces the panel to repaint itself. This brings me to my second event, which
is helped out by a Handles clause:

Protected Sub PanelPaint(ByVal sender As Object, ByVal e As

System.Windows.Forms.PaintEventArgs) Handles Panel1.Paint,

Panel2.Paint, Panel3.Paint, Panel4.Paint, Panel5.Paint,

Panel6.Paint, Panel7.Paint, Panel8.Paint, Panel9.Paint

Dim p As Panel

p = CType(sender, Panel)

e.Graphics.FillRectangle(New SolidBrush(p.BackColor),

p.ClientRectangle)

If p.BackColor.Equals(Red) Then

e.Graphics.DrawEllipse(New

Pen(System.Drawing.Color.Green, 3), p.ClientRectangle)

Else

e.Graphics.DrawEllipse(New

Pen(System.Drawing.Color.Yellow, 3), p.ClientRectangle)

End If

End Sub

H A N D L I N G C O N T R O L A R R AYS A N OT H E R WAY 27

2890c01.qxd 08/14/2001 7:19 AM Page 27

Again, the paint event for all nine panels is handled by this single event, in
which I again typecast the sender variable to a local Panel variable so I can
do stuff to it. I then write some custom painting code. First, I fill the panel
with its defined BackColor, and then (just for fun), I draw a circle within
the boundary of the panel.

The final effect is that clicking any of the nine panels switches their color
from red to blue. You can easily see how this might be the beginning of a
tic-tac-toe game or something similar:

F R O M V B 6 TO V B . N E T28

2890c01.qxd 08/14/2001 7:19 AM Page 28

